Publication: Charge Transport and Rectification in Arrays of SAM-Based Tunneling Junctions
Open/View Files
Date
2010
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Nijhuis, Christian A., William F. Reus, Jabulani R. Barber, Michael D. Dickey, and George M. Whitesides. 2010. Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Letters 10(9): 3611-3619.
Research Data
Abstract
This paper describes a method of fabrication that generates small arrays of tunneling junctions based on self-assembled monolayers (SAMs); these junctions have liquid-metal top-electrodes stabilized in microchannels and ultraflat (template-stripped) bottom-electrodes. The yield of junctions generated using this method is high (70−90%). The junctions examined incorporated SAMs of alkanethiolates having ferrocene termini (11-(ferrocenyl)-1-undecanethiol, SC\(_{11}\)Fc); these junctions rectify currents with large rectification ratios (R), the majority of which fall within the range of 90−180. These values are larger than expected (theory predicts R ≤ 20) and are larger than previous experimental measurements. SAMs of n-alkanethiolates without the Fc groups (SC\(_{n−1}\)CH\(_3\), with n = 12, 14, 16, or 18) do not rectify (R ranged from 1.0 to 5.0). These arrays enable the measurement of the electrical characteristics of the junctions as a function of chemical structure, voltage, and temperature over the range of 110−293 K, with statistically large numbers of data (N = 300−800). The mechanism of rectification with Fc-terminated SAMs seems to be charge transport processes that change with the polarity of bias: from tunneling (at one bias) to hopping combined with tunneling (at the opposite bias).
Description
Other Available Sources
Keywords
nanoelectronics, molecular electronics, charge transport, self-assembled monolayers, rectification, charge transfer
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service