Publication: Core Multiplication in Childhood
Open/View Files
Date
2010
Authors
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
McCrink, Koleen, and Elizabeth S. Spelke. 2010. Core multiplication in childhood. Cognition 116(2): 204-216.
Research Data
Abstract
A dedicated, non-symbolic, system yielding imprecise representations of large quantities (approximate number system, or ANS) has been shown to support arithmetic calculations of addition and subtraction. In the present study, 5–7-year-old children without formal schooling in multiplication and division were given a task requiring a scalar transformation of large approximate numerosities, presented as arrays of objects. In different conditions, the required calculation was doubling, quadrupling, or increasing by a fractional factor (2.5). In all conditions, participants were able to represent the outcome of the transformation at above-chance levels, even on the earliest training trials. Their performance could not be explained by processes of repeated addition, and it showed the critical ratio signature of the ANS. These findings provide evidence for an untrained, intuitive process of calculating multiplicative numerical relationships, providing a further foundation for formal arithmetic instruction.
Description
Other Available Sources
Keywords
number, multiplication, cognition development
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service