Publication:
Re-Engineering the Tumor Microenvironment to Enhance Drug Delivery

Thumbnail Image

Date

2013-02-22

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Chauhan, Vikash Pal Singh. 2012. Re-Engineering the Tumor Microenvironment to Enhance Drug Delivery. Doctoral dissertation, Harvard University.

Research Data

Abstract

Tumors are similar to organs, with unique physiology giving rise to an unusual set of transport barriers to drug delivery. Cancer therapy is limited by non-uniform drug delivery via blood vessels, inhomogeneous drug transport into tumor interstitium from the vascular compartment, and hindered transport through tumor interstitium to the target cells. Four major abnormal physical and physiological properties contribute to these transport barriers. Accumulated solid stress compresses blood vessels to diminish the drug supply to many tumor regions. Immature vasculature with high viscous and geometric resistances and reduced pressure gradients leads to sluggish and heterogeneous blood flow in tumors to further limit drug supply. Nonfunctional lymphatics coupled with highly permeable blood vessels result in elevated hydrostatic pressure in tumors to abrogate convective drug transport from blood vessels into and throughout most of the tumor tissue. Finally, a dense structure of interstitial matrix and cells serves as a tortuous, viscous, and steric barrier to diffusion of therapeutic agents. In this dissertation, I discuss the origins and implications of these barriers. I then highlight strategies I have developed for overcoming these barriers by modulating either drug properties or the tumor microenvironment itself to enhance the delivery and effectiveness of drugs in tumors.

Description

Other Available Sources

Keywords

biomedical engineering, cancer, chemotherapy, chemoresistance, microenvironment, normalization, pathopsysiology

Terms of Use

Metadata Only

Endorsement

Review

Supplemented By

Referenced By

Related Stories