Publication:
Neural Process Reconstruction from Sparse User Scribbles

Thumbnail Image

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Verlag
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Roberts, Mike, Won-Ki Jeong, Amelio Vázquez-Reina, Markus Unger, Horst Bischof, Jeff Lichtman, and Hanspeter Pfister. 2011. “Neural Process Reconstruction from Sparse User Scribbles.” Lecture Notes in Computer Science: 621–628.

Research Data

Abstract

We present a novel semi-automatic method for segmenting neural processes in large, highly anisotropic EM (electron microscopy) image stacks. Our method takes advantage of sparse scribble annotations provided by the user to guide a 3D variational segmentation model, thereby allowing our method to globally optimally enforce 3D geometric constraints on the segmentation. Moreover, we leverage a novel algorithm for propagating segmentation constraints through the image stack via optimal volumetric pathways, thereby allowing our method to compute highly accurate 3D segmentations from very sparse user input. We evaluate our method by reconstructing 16 neural processes in a 1024×1024×50 nanometer-scale EM image stack of a mouse hippocampus. We demonstrate that, on average, our method is 68% more accurate than previous state-of-the-art semi-automatic methods.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories