Publication:
Inflammation and Immune-Related Candidate Gene Associations with Acute Lung Injury Susceptibility and Severity: A Validation Study

Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

O'Mahony, D. Shane, Bradford J. Glavan, Tarah D. Holden, Christie Fong, R. Anthony Black, Gail Rona, Paula Tejera, David C. Christiani, and Mark M. Wurfel. 2012. Inflammation and immune-related candidate gene associations with acute lung injury susceptibility and severity: a validation study. PLoS ONE 7(12): e51104.

Research Data

Abstract

Introduction: Common variants in genes related to inflammation, innate immunity, epithelial cell function, and angiogenesis have been reported to be associated with risks for Acute Lung Injury (ALI) and related outcomes. We tested whether previously-reported associations can be validated in an independent cohort at risk for ALI. Methods: We identified 37 genetic variants in 27 genes previously associated with ALI and related outcomes. We prepared allelic discrimination assays for 12 SNPs from 11 genes with MAF>0.05 and genotyped these SNPs in Caucasian subjects from a cohort of critically ill patients meeting criteria for the systemic inflammatory response syndrome (SIRS) followed for development of ALI, duration of mechanical ventilation, and in-hospital death. We tested for associations using additive and recessive genetic models. Results: Among Caucasian subjects with SIRS (n = 750), we identified a nominal association between rs2069832 in IL6 and ALI susceptibility (OR\(_{adj}\) 1.61; 95% confidence interval [CI], 1.04–2.48, P = 0.03). In a sensitivity analysis limiting ALI cases to those who qualified for the Acute Respiratory Distress Syndrome (ARDS), rs61330082 in NAMPT was nominally associated with risk for ARDS. In terms of ALI outcomes, SNPs in MBL2 (rs1800450) and IL8 (rs4073) were nominally associated with fewer ventilator-free days (VFDs), and SNPs in NFE2L2 (rs6721961) and NAMPT (rs61330082) were nominally associated with 28-day mortality. The directions of effect for these nominal associations were in the same direction as previously reported but none of the associations survived correction for multiple hypothesis testing. Conclusion: Although our primary analyses failed to statistically validate prior associations, our results provide some support for associations between SNPs in IL6 and NAMPT and risk for development of lung injury and for SNPs in IL8, MBL2, NFE2L2 and NAMPT with severity in ALI outcomes. These associations provide further evidence that genetic factors in genes related to immunity and inflammation contribute to ALI pathogenesis.

Description

Keywords

Biology, Computational Biology, Population Genetics, Genetic Polymorphism, Genetics, Human Genetics, Genetic Association Studies, Genetics of Disease, Medicine, Critical Care and Emergency Medicine, Multiple Organ Failure, Respiratory Failure, Sepsis, Ventilatory Support, Epidemiology, Genetic Epidemiology

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories