Publication:
Characterizing Sympathetic Neurovascular Transduction in Humans

Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Tan, Can Ozan, Renaud Tamisier, J. W. Hamner, and J. Andrew Taylor. 2013. Characterizing sympathetic neurovascular transduction in humans. PLoS ONE 8(1): e53769.

Research Data

Abstract

Despite its critical role for cardiovascular homeostasis in humans, only a few studies have directly probed the transduction of sympathetic nerve activity to regional vascular responses – sympathetic neurovascular transduction. Those that have variably relied on either vascular resistance or vascular conductance to quantify the responses. However, it remains unclear which approach would better reflect the physiology. We assessed the utility of both of these as well as an alternative approach in 21 healthy men. We recorded arterial pressure (Finapres), peroneal sympathetic nerve activity (microneurography), and popliteal blood flow (Doppler) during isometric handgrip exercise to fatigue. We quantified and compared transduction via the relation of sympathetic activity to resistance and to conductance and via an adaptation of Poiseuille’s relation including pressure, sympathetic activity, and flow. The average relationship between sympathetic activity and resistance (or conductance) was good when assessed over 30-second averages (mean R\(^2\)=0.49±0.07) but lesser when incorporating beat-by-beat time lags (R\(^2\)=0.37±0.06). However, in a third of the subjects, these relations provided relatively weak estimates (R\(^2\)<0.33). In contrast, the Poiseuille relation reflected vascular responses more accurately (R\(^2\)=0.77±0.03, >0.50 in 20 of 21 individuals), and provided reproducible estimates of transduction. The gain derived from the relation of resistance (but not conductance) was inversely related to transduction (R\(^2\)=0.37, p<0.05), but with a proportional bias. Thus, vascular resistance and conductance may not always be reliable surrogates for regional sympathetic neurovascular transduction, and assessment from a Poiseuille relation between pressure, sympathetic nerve activity, and flow may provide a better foundation to further explore differences in transduction in humans.

Description

Keywords

Biology, Neuroscience, Neurophysiology, Medicine, Anatomy and Physiology, Cardiovascular System, Circulatory Physiology, Physiological Processes, Aging, Electrophysiology, Cardiovascular, Hemodynamics, Hypertension, Vascular Biology

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories