Publication: Cardinality Restricted Boltzmann Machines
Open/View Files
Date
2012
Published Version
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Massachusetts Institute of Technology Press
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Swersky, Kevin, Daniel Tarlow, Ilya Sutskever, Ruslan Salakhutdinov, Richard S. Zemel, and Ryan P. Adams. 2012. Cardinality restricted Boltzmann machines. Advances in Neural Information Processing Systems 25: 3293-3301.
Research Data
Abstract
The Restricted Boltzmann Machine (RBM) is a popular density model that is also good for extracting features. A main source of tractability in RBM models is that, given an input, the posterior distribution over hidden variables is factorizable and can be easily computed and sampled from. Sparsity and competition in the hidden representation is beneficial, and while an RBM with competition among its hidden units would acquire some of the attractive properties of sparse coding, such constraints are typically not added, as the resulting posterior over the hidden units seemingly becomes intractable. In this paper we show that a dynamic programming algorithm can be used to implement exact sparsity in the RBM’s hidden units. We also show how to pass derivatives through the resulting posterior marginals, which makes it possible to fine-tune a pre-trained neural network with sparse hidden layers.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service