Publication:
Training Restricted Boltzmann Machines on Word Observations

Thumbnail Image

Date

2012

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

International Machine Learning Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Dahl, George E., Ryan Prescott Adams, and Hugo Larochelle. 2012. Training restricted Boltzmann machines on word observations. In Proceedings of the 29th International Conference on Machine Learning, Edinburgh, Scotland, June 26 – July 1, 2012, ed. John Langford and Joelle Pineau, 679-686. Edinburgh: International Machine Learning Society.

Research Data

Abstract

The restricted Boltzmann machine (RBM) is a flexible tool for modeling complex data, however there have been significant computational difficulties in using RBMs to model high-dimensional multinomial observations. In natural language processing applications, words are naturally modeled by K-ary discrete distributions, where K is determined by the vocabulary size and can easily be in the hundreds of thousands. The conventional approach to training RBMs on word observations is limited because it requires sampling the states of K-way softmax visible units during block Gibbs updates, an operation that takes time linear in K. In this work, we address this issue by employing a more general class of Markov chain Monte Carlo operators on the visible units, yielding updates with computational complexity independent of K. We demonstrate the success of our approach by training RBMs on hundreds of millions of word n-grams using larger vocabularies than previously feasible and using the learned features to improve performance on chunking and sentiment classification tasks, achieving state-of-the-art results on the latter.

Description

Keywords

learning, machine learning

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories