Publication: Genomic variation and evolution of the human malaria parasite Plasmodium falciparum
Open/View Files
Date
2013-10-08
Authors
Published Version
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Chang, Hsiao-Han. 2013. Genomic variation and evolution of the human malaria parasite Plasmodium falciparum. Doctoral dissertation, Harvard University.
Research Data
Abstract
Malaria is a deadly disease that causes nearly one million deaths each year. Understanding the demographic history of the malaria parasite Plasmodium falciparum and the genetic basis of its adaptations to antimalarial treatments and the human immune system is important for developing methods to control and eradicate malaria. To study the long-term demographic history and recent effective size of the population in order to identify genes under selection more efficiently and predict the effectiveness of selection, in Chapter 2 we sequenced the complete genomes of 25 cultured P. falciparum isolates from Senegal. In addition, in Chapter 3 we estimated temporal allele frequencies in 24 loci among 528 strains from the same population across six years. Based on genetic diversity of the genome sequences, we estimate the long-term effective population size to be approximately 100,000, and a major population expansion of the parasite population approximately 20,000-40,000 years ago. Based on temporal changes in allele frequencies, however, the recent effective size is estimated to be less than 100 from 2007-2011. The discrepancy may reflect recent aggressive efforts to control malaria in Senegal or migration between populations.
Description
Other Available Sources
Keywords
Biology, effective population size, evolution, genomic variation, Plasmodium falciparum
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service