Publication: A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers
Date
2012
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science + Business Media
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Wakeling, James M., Sabrina S. M. Lee, Allison S. Arnold, Maria Boef Miara, and Andrew A. Biewener. 2012. “A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers.” Annals of Biomedical Engineering 40 (8) (August): 1708–1720.
Research Data
Abstract
Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service