Publication:
Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii

Thumbnail Image

Date

2013

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Pub. Group
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Seim, I., X. Fang, Z. Xiong, A. V. Lobanov, Z. Huang, S. Ma, Y. Feng, et al. 2013. “Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii.” Nature Communications 4 (1): 2212. doi:10.1038/ncomms3212. http://dx.doi.org/10.1038/ncomms3212.

Research Data

Abstract

Bats account for one-fifth of mammalian species, are the only mammals with powered flight, and are among the few animals that echolocate. The insect-eating Brandt’s bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4–8 g adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity. Here we report sequencing and analysis of the Brandt’s bat genome and transcriptome, which suggest adaptations consistent with echolocation and hibernation, as well as altered metabolism, reproduction and visual function. Unique sequence changes in growth hormone and insulin-like growth factor 1 receptors are also observed. The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt’s bat.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories