Publication:
Passing Messages between Biological Networks to Refine Predicted Interactions

Thumbnail Image

Open/View Files

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Glass, Kimberly, Curtis Huttenhower, John Quackenbush, and Guo-Cheng Yuan. 2013. “Passing Messages between Biological Networks to Refine Predicted Interactions.” PLoS ONE 8 (5): e64832. doi:10.1371/journal.pone.0064832. http://dx.doi.org/10.1371/journal.pone.0064832.

Research Data

Abstract

Regulatory network reconstruction is a fundamental problem in computational biology. There are significant limitations to such reconstruction using individual datasets, and increasingly people attempt to construct networks using multiple, independent datasets obtained from complementary sources, but methods for this integration are lacking. We developed PANDA (Passing Attributes between Networks for Data Assimilation), a message-passing model using multiple sources of information to predict regulatory relationships, and used it to integrate protein-protein interaction, gene expression, and sequence motif data to reconstruct genome-wide, condition-specific regulatory networks in yeast as a model. The resulting networks were not only more accurate than those produced using individual data sets and other existing methods, but they also captured information regarding specific biological mechanisms and pathways that were missed using other methodologies. PANDA is scalable to higher eukaryotes, applicable to specific tissue or cell type data and conceptually generalizable to include a variety of regulatory, interaction, expression, and other genome-scale data. An implementation of the PANDA algorithm is available at www.sourceforge.net/projects/panda-net.

Description

Keywords

Biology, Computational Biology, Genomics, Genome Analysis Tools, Genetic Networks, Regulatory Networks, Systems Biology, Genetics, Gene Networks, Model Organisms, Yeast and Fungal Models

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories