Publication:
Tetrahedral colloidal clusters from random parking of bidisperse spheres

Research Projects

Organizational Units

Journal Issue

Citation

Schade, Nicholas B., Miranda C. Holmes-Cerfon, Elizabeth R. Chen, Dina Aronzon, Jesse W. Collins, Jonathan A. Fan, Federico Capasso, and Vinothan N. Manoharan. 2013. “Tetrahedral Colloidal Clusters from Random Parking of Bidisperse Spheres.” Physical Review Letters 110 (14): 148303.

Research Data

Abstract

Using experiments and simulations, we investigate the clusters that form when colloidal spheres stick irreversibly to—or “park” on—smaller spheres. We use either oppositely charged particles or particles labeled with complementary DNA sequences, and we vary the ratio α of large to small sphere radii. Once bound, the large spheres cannot rearrange, and thus the clusters do not form dense or symmetric packings. Nevertheless, this stochastic aggregation process yields a remarkably narrow distribution of clusters with nearly 90% tetrahedra at α=2.45. The high yield of tetrahedra, which reaches 100% in simulations at α=2.41, arises not simply because of packing constraints, but also because of the existence of a long-time lower bound that we call the “minimum parking” number. We derive this lower bound from solutions to the classic mathematical problem of spherical covering, and we show that there is a critical size ratio αc=(1+√2)≈2.41, close to the observed point of maximum yield, where the lower bound equals the upper bound set by packing constraints. The emergence of a critical value in a random aggregation process offers a robust method to assemble uniform clusters for a variety of applications, including metamaterials.

Description

Other Available Sources

Keywords

colloids, clusters

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories