Publication: Contribution of Selection for Protein Folding Stability in Shaping the Patterns of Polymorphisms in Coding Regions
Open/View Files
Date
2013
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Serohijos, Adrian W.R., and Eugene I. Shakhnovich. 2013. “Contribution of Selection for Protein Folding Stability in Shaping the Patterns of Polymorphisms in Coding Regions.” Molecular Biology and Evolution 31 (1): 165-176. doi:10.1093/molbev/mst189. http://dx.doi.org/10.1093/molbev/mst189.
Research Data
Abstract
The patterns of polymorphisms in genomes are imprints of the evolutionary forces at play in nature. In particular, polymorphisms have been extensively used to infer the fitness effects of mutations and their dynamics of fixation. However, the role and contribution of molecular biophysics to these observations remain unclear. Here, we couple robust findings from protein biophysics, enzymatic flux theory, the selection against the cytotoxic effects of protein misfolding, and explicit population dynamics simulations in the polyclonal regime. First, we recapitulate results on the dynamics of clonal interference and on the shape of the DFE, thus providing them with a molecular and mechanistic foundation. Second, we predict that if evolution is indeed under the dynamic equilibrium of mutation–selection balance, the fraction of stabilizing and destabilizing mutations is almost equal among single-nucleotide polymorphisms segregating at high allele frequencies. This prediction is proven true for polymorphisms in the human coding region. Overall, our results show how selection for protein folding stability predominantly shapes the patterns of polymorphisms in coding regions.
Description
Other Available Sources
Keywords
SNPs, polymorphism, protein folding stability, DFE, clonal interference
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service