Publication:
Annotation Enrichment Analysis: An Alternative Method for Evaluating the Functional Properties of Gene Sets

Thumbnail Image

Open/View Files

Date

2014

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Glass, Kimberly, and Michelle Girvan. 2014. “Annotation Enrichment Analysis: An Alternative Method for Evaluating the Functional Properties of Gene Sets.” Scientific Reports 4 (1): 4191. doi:10.1038/srep04191. http://dx.doi.org/10.1038/srep04191.

Research Data

Abstract

Gene annotation databases (compendiums maintained by the scientific community that describe the biological functions performed by individual genes) are commonly used to evaluate the functional properties of experimentally derived gene sets. Overlap statistics, such as Fishers Exact test (FET), are often employed to assess these associations, but don't account for non-uniformity in the number of genes annotated to individual functions or the number of functions associated with individual genes. We find FET is strongly biased toward over-estimating overlap significance if a gene set has an unusually high number of annotations. To correct for these biases, we develop Annotation Enrichment Analysis (AEA), which properly accounts for the non-uniformity of annotations. We show that AEA is able to identify biologically meaningful functional enrichments that are obscured by numerous false-positive enrichment scores in FET, and we therefore suggest it be used to more accurately assess the biological properties of gene sets.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories