Publication:
Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon

Thumbnail Image

Open/View Files

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Broadbent, Eben N., Angélica M. Almeyda Zambrano, Gregory P. Asner, Marlene Soriano, Christopher B. Field, Harrison Ramos de Souza, Marielos Peña-Claros, Rachel I. Adams, Rodolfo Dirzo, and Larry Giles. 2014. “Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon.” PLoS ONE 9 (2): e86042. doi:10.1371/journal.pone.0086042. http://dx.doi.org/10.1371/journal.pone.0086042.

Research Data

Abstract

Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ13C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ13C dynamics were largely constrained by plant species composition. Foliar δ15N had a significant negative correlation with both stand age and species successional status, – most likely resulting from a large initial biomass-burning enrichment in soil 15N and 13C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession.

Description

Keywords

Agriculture, Forestry, Biology, Ecology, Community Ecology, Community Assembly, Species Interactions, Trophic Interactions, Ecological Metrics, Biomass (Ecology), Productivity (Ecology), Species Diversity, Plant Ecology, Plant-Environment Interactions, Physiological Ecology, Population Ecology, Restoration Ecology, Soil Ecology, Spatial and Landscape Ecology, Terrestrial Ecology, Plant Science, Plant Growth and Development, Earth Sciences, Geochemistry, Carbon Cycle

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories