Publication:
The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage

Thumbnail Image

Open/View Files

Date

2013

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

BioMed Central
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Hanafy, Khalid A. 2013. “The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage.” Journal of Neuroinflammation 10 (1): 83. doi:10.1186/1742-2094-10-83. http://dx.doi.org/10.1186/1742-2094-10-83.

Research Data

Abstract

Background: Although microglia and the Toll-like receptor (TLR) pathway have long been thought to play a role in the pathogenesis of aneurysmal subarachnoid hemorrhage (aSAH), thus far only correlations have been made. In this study, we attempted to solidify the relationship between microglia and the TLR pathway using depletion and genetic knockouts, respectively. Methods: Subarachnoid hemorrhage was induced in TLR4−/−, TRIF−/−, MyD88−/− and wild type C57BL/6 mice by injecting 60 μl of autologous blood near the mesencephalon; animals were euthanized 1 to 15 days after SAH for immunohistochemical analysis to detect microglia or apoptotic cells. Lastly, microglial depletion was performed by intracerebroventricular injection of clodronate liposomes. Results: On post operative day (POD) 7 (early phase SAH), neuronal apoptosis was largely TLR4-MyD88-dependent and microglial-dependent. By POD 15 (late phase SAH), neuronal apoptosis was characterized by TLR4- toll receptor associated activator of interferon (TRIF)-dependence and microglial-independence. Similarly, vasospasm was also characterized by an early and late phase with MyD88 and TRIF dependence, respectively. Lastly, microglia seem to be both necessary and sufficient to cause vasospasm in both the early and late phases of SAH in our model. Conclusion: Our results suggest that SAH pathology could have different phases. These results could explain why therapies tailored to aSAH patients have failed for the most part. Perhaps a novel strategy utilizing immunotherapies that target Toll like receptor signaling and microglia at different points in the patient’s hospital course could improve outcomes.

Description

Keywords

TLR, TRIF, MyD88, SAH, Microglia

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories