Publication:
A Gata3–Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing

Thumbnail Image

Open/View Files

Date

2013

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

eLife Sciences Publications, Ltd
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Yu, Wei-Ming, Jessica M Appler, Ye-Hyun Kim, Allison M Nishitani, Jeffrey R Holt, and Lisa V Goodrich. 2013. “A Gata3–Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing.” eLife 2 (1): e01341. doi:10.7554/eLife.01341. http://dx.doi.org/10.7554/eLife.01341.

Research Data

Abstract

Information flow through neural circuits is determined by the nature of the synapses linking the subtypes of neurons. How neurons acquire features distinct to each synapse remains unknown. We show that the transcription factor Mafb drives the formation of auditory ribbon synapses, which are specialized for rapid transmission from hair cells to spiral ganglion neurons (SGNs). Mafb acts in SGNs to drive differentiation of the large postsynaptic density (PSD) characteristic of the ribbon synapse. In Mafb mutant mice, SGNs fail to develop normal PSDs, leading to reduced synapse number and impaired auditory responses. Conversely, increased Mafb accelerates synaptogenesis. Moreover, Mafb is responsible for executing one branch of the SGN differentiation program orchestrated by the Gata3 transcriptional network. Remarkably, restoration of Mafb rescues the synapse defect in Gata3 mutants. Hence, Mafb is a powerful regulator of cell-type specific features of auditory synaptogenesis that offers a new entry point for treating hearing loss. DOI: http://dx.doi.org/10.7554/eLife.01341.001

Description

Keywords

auditory, spiral ganglion neuron, ribbon synapse, Mafb, Gata3, synaptogenesis, Mouse

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories