Publication:
Vortex Lattices and Crystalline Geometries

Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society (APS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Bao, Ning, Sarah Harrison, Shamit Kachru, and Subir Sachdev. 2013. Vortex Lattices and Crystalline Geometries. Physical Review D 88, no. 2: 026002.

Research Data

Abstract

We consider AdS2×R2 solutions supported by a magnetic field, such as those which arise in the near-horizon limit of magnetically charged AdS4 Reissner-Nordstrom black branes. In the presence of an electrically charged scalar field, such magnetic solutions can be unstable to spontaneous formation of a vortex lattice. We solve the coupled partial differential equations that govern the charged scalar, gauge field, and metric degrees of freedom to lowest nontrivial order in an expansion around the critical point and discuss the corrections to the free energy and thermodynamic functions arising from the formation of the lattice. We describe how such solutions can also be interpreted, via S-duality, as characterizing infrared crystalline phases of conformal field theories doped by a chemical potential, but in zero magnetic field; the doped conformal field theories are dual to geometries that exhibit dynamical scaling and hyperscaling violation.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories