Publication: In vitro model suggests oxidative stress involved in keratoconus disease
Open/View Files
Date
2014
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Karamichos, D., A. E. K. Hutcheon, C. B. Rich, V. Trinkaus-Randall, J. M. Asara, and J. D. Zieske. 2014. “In vitro model suggests oxidative stress involved in keratoconus disease.” Scientific Reports 4 (1): 4608. doi:10.1038/srep04608. http://dx.doi.org/10.1038/srep04608.
Research Data
Abstract
Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service