Publication:
Mutants of Cre recombinase with improved accuracy

Thumbnail Image

Open/View Files

Date

2013

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Eroshenko, Nikolai, and George M. Church. 2013. “Mutants of Cre recombinase with improved accuracy.” Nature communications 4 (1): 2509. doi:10.1038/ncomms3509. http://dx.doi.org/10.1038/ncomms3509.

Research Data

Abstract

Despite rapid advances in genome engineering technologies, inserting genes into precise locations in the human genome remains an outstanding problem. It has been suggested that site-specific recombinases can be adapted towards use as transgene delivery vectors. The specificity of recombinases can be altered either with directed evolution or via fusions to modular DNA-binding domains. Unfortunately, both wildtype and altered variants often have detectable activities at off-target sites. Here we use bacterial selections to identify mutations in the dimerization surface of Cre recombinase (R32V, R32M, and 303GVSdup) that improve the accuracy of recombination. The mutants are functional in bacteria, in human cells, and in vitro (except for 303GVSdup, which we did not purify), and have improved selectivity against both model off-target sites and the entire E. coli genome. We propose that destabilizing binding cooperativity may be a general strategy for improving the accuracy of dimeric DNA-binding proteins.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories