Publication:
Confined Organization of Fullerene Units Along High Polymer Chains

Thumbnail Image

Date

2013

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Society of Chemistry (RSC)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Fang, Lei, Peng Liu, Benjamin R. Sveinbjornsson, Sule Atahan-Evrenk, Koen Vandewal, Sílvia Osuna, Gonzalo Jiménez-Osés, et al. 2013. Confined Organization of Fullerene Units Along High Polymer Chains. Journal of Materials Chemistry C 1(36):5747.

Research Data

Abstract

Conductive fullerene \((C_{60})\) units were designed to be arranged in one dimensional close contact by locally organizing them with covalent bonds in a spatially constrained manner. Combined molecular dynamics and quantum chemical calculations predicted that the intramolecular electronic interactions (i.e. charge transport) between the pendant \(C_{60}\) units could be controlled by the length of the spacers linking the \(C_{60}\) units and the polymer main chain. In this context, \(C_{60}\) side-chain polymers with high relative degrees of polymerization up to 1220 and fullerene compositions up to 53% were synthesized by ruthenium catalyzed ring-opening metathesis polymerization of the corresponding norbornene-functionalized monomers. UV/vis absorption and photothermal deflection spectra corroborated the enhanced inter-fullerene interactions along the polymer chains. The electron mobility measured for the thin film field-effect transistor devices from the polymers was more than an order of magnitude higher than that from the monomers, as a result of the stronger electronic coupling between the adjacent fullerene units within the long polymer chains. This molecular design strategy represents a general approach to the enhancement of charge transport properties of organic materials via covalent bond-based organization.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories