Publication:
Coherent Exciton Dynamics in Supramolecular Light-Harvesting Nanotubes Revealed by Ultrafast Quantum Process Tomography

Thumbnail Image

Date

2014

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society (ACS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Yuen-Zhou, Joel, Dylan H. Arias, Dorthe M. Eisele, Colby P. Steiner, Jacob J. Krich, Moungi G. Bawendi, Keith A. Nelson, and Alán Aspuru-Guzik. 2014. “Coherent Exciton Dynamics in Supramolecular Light-Harvesting Nanotubes Revealed by Ultrafast Quantum Process Tomography.” ACS Nano 8 (6) (June 24): 5527–5534.

Research Data

Abstract

Long-lived exciton coherences have been recently observed in photosynthetic complexes via ultrafast spectroscopy, opening exciting possibilities for the study and design of coherent exciton transport. Yet, ambiguity in the spectroscopic signals has led to arguments for interpreting them in terms of the exciton dynamics, demanding more stringent tests. We propose a novel strategy, Quantum Process Tomography (QPT) for ultrafast spectroscopy, to reconstruct the evolving quantum state of excitons in double-walled supramolecular light-harvesting nanotubes at room temperature. The protocol calls for eight transient grating experiments with varied pulse spectra. Our analysis reveals unidirectional energy transfer from the outer to the inner wall excitons, absence of nonsecular processes, and an unexpected coherence between those two states lasting about 150 femtoseconds, indicating weak electronic coupling between the walls. Our work constitutes the first experimental QPT in a “warm” and complex system, and provides an elegant scheme to maximize information from ultrafast spectroscopy experiments.

Description

Keywords

quantum process tomography, supramolecular aggregates, energy transfer, exciton coherence, ultrafast spectroscopy, open quantum system, nonlinear optics

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories