Publication: Self-assembled hydrogel fibers for sensing the multi-compartment intracellular milieu
Open/View Files
Date
2014
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Vemula, Praveen Kumar, Jonathan E. Kohler, Amy Blass, Miguel Williams, Chenjie Xu, Lynna Chen, Swapnil R. Jadhav, George John, David I. Soybel, and Jeffrey M. Karp. 2014. “Self-assembled hydrogel fibers for sensing the multi-compartment intracellular milieu.” Scientific Reports 4 (1): 4466. doi:10.1038/srep04466. http://dx.doi.org/10.1038/srep04466.
Research Data
Abstract
Targeted delivery of drugs and sensors into cells is an attractive technology with both medical and scientific applications. Existing delivery vehicles are generally limited by the complexity of their design, dependence on active transport, and inability to function within cellular compartments. Here, we developed self-assembled nanofibrous hydrogel fibers using a biologically inert, low-molecular-weight amphiphile. Self-assembled nanofibrous hydrogels offer unique physical/mechanical properties and can easily be loaded with a diverse range of payloads. Unlike commercially available E. coli membrane particles covalently bound to the pH reporting dye pHrodo, pHrodo encapsulated in self-assembled hydrogel-fibers internalizes into macrophages at both physiologic (37°C) and sub-physiologic (4°C) temperatures through an energy-independent, passive process. Unlike dye alone or pHrodo complexed to E. coli, pHrodo-SAFs report pH in both the cytoplasm and phagosomes, as well the nucleus. This new class of materials should be useful for next-generation sensing of the intracellular milieu.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service