Publication: Automated Sleep Apnea Quantification Based on Respiratory Movement
Open/View Files
Date
2014
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Ivyspring International Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Bianchi, M.T., T. Lipoma, C. Darling, Y. Alameddine, and M.B. Westover. 2014. “Automated Sleep Apnea Quantification Based on Respiratory Movement.” International Journal of Medical Sciences 11 (8): 796-802. doi:10.7150/ijms.9303. http://dx.doi.org/10.7150/ijms.9303.
Research Data
Abstract
Obstructive sleep apnea (OSA) is a prevalent and treatable disorder of neurological and medical importance that is traditionally diagnosed through multi-channel laboratory polysomnography(PSG). However, OSA testing is increasingly performed with portable home devices using limited physiological channels. We tested the hypothesis that single channel respiratory effort alone could support automated quantification of apnea and hypopnea events. We developed a respiratory event detection algorithm applied to thoracic strain-belt data from patients with variable degrees of sleep apnea. We optimized parameters on a training set (n=57) and then tested performance on a validation set (n=59). The optimized algorithm correlated significantly with manual scoring in the validation set (R2 = 0.73 for training set, R2 = 0.55 for validation set; p<0.05). For dichotomous classification, the AUC was >0.92 and >0.85 using apnea-hypopnea index cutoff values of 5 and 15, respectively. Our findings demonstrate that manually scored AHI values can be approximated from thoracic movements alone. This finding has potential applications for automating laboratory PSG analysis as well as improving the performance of limited channel home monitors.
Description
Other Available Sources
Keywords
algorithm, prediction, respiration, classification, sleep apnea
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service