Publication:
Interplay of chemical disorder and electronic inhomogeneity in unconventional superconductors

Thumbnail Image

Date

2013

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Society of Chemistry (RSC)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Zeljkovic, Ilija, and Jennifer E. Hoffman. 2013. “Interplay of Chemical Disorder and Electronic Inhomogeneity in Unconventional Superconductors.” Physical Chemistry Chemical Physics 15 (32): 13462.

Research Data

Abstract

Many of today's forefront materials, such as high-Tc superconductors, doped semiconductors, and colossal magnetoresistance materials, are structurally, chemically and/or electronically inhomogeneous at the nanoscale. Although inhomogeneity can degrade the utility of some materials, defects can also be advantageous. Quite generally, defects can serve as nanoscale probes and facilitate quasiparticle scattering used to extract otherwise inaccessible electronic properties. In superconductors, non-stoichiometric dopants are typically necessary to achieve a high transition temperature, while both structural and chemical defects are used to pin vortices and increase critical current. Scanning tunneling microscopy (STM) has proven to be an ideal technique for studying these processes at the atomic scale. In this perspective, we present an overview of STM studies on chemical disorder in unconventional superconductors, and discuss how dopants, impurities and adatoms may be used to probe, pin or enhance the intrinsic electronic properties of these materials.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories