Publication:
Isotope effect in charge-transfer collisions of H with He^{+}

Thumbnail Image

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society (APS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Loreau, J., S. Ryabchenko, A. Dalgarno, and N. Vaeck. 2011. “Isotope Effect in Charge-Transfer Collisions of H with He^{+}.” Physics Review A 84, no. 5: 052720.

Research Data

Abstract

We present a theoretical study of the isotope effect arising from the replacement of H by T in the charge-transfer collision H(n=2) + He+(1s) at low energy. Using a quasimolecular approach and a time-dependent wave-packet method, we compute the cross sections for the reaction including the effects of the nonadiabatic radial and rotational couplings. For H(2s) + He+(1s) collisions, we find a strong isotope effect at energies below 1 eV/amu for both singlet and triplet states. We find a much smaller isotopic dependence of the cross section for H(2p) + He+(1s) collisions in triplet states, and no isotope effect in singlet states. We explain the isotope effect on the basis of the potential energy curves and the nonadiabatic couplings, and we evaluate the importance of the isotope effect on the charge-transfer rate coefficients.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories