Publication: Identification of Panel Data Models with Endogenous Censoring
Open/View Files
Date
2015
Authors
Published Version
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Khan, S., M. Ponomareva, and E. Tamer. 2015. Identification of Panel Data Models with Endogenous Censoring. Working paper, Department of Economics, Harvard University.
Research Data
Abstract
We study inference on parameters in censored panel data models, where the censoring can depend on both observable and unobservable variables in arbitrary ways. Under some general conditions, we characterize the information the model and data contain about the parameters of interest by deriving the identified sets: Every parameter that belongs to these sets is observationally equivalent to the true parameter - the one that generated the data . We consider two separate sets of assumptions (2 models): the first uses stationarity on the unobserved disturbance terms. The second is a nonstationary model with a conditional independence restriction. Based on the characterizations of the identified sets, we provide a valid inference procedure that is shown to yield correct confidence sets based on inverting stochastic dominance tests. Also, we also show how our results extend to empirically interesting dynamic versions of the model with both lagged observed outcomes, and lagged indicators. We also show extensions to models with factor loads. In addition, and for both models, we provide sufficient conditions for point identification in terms of support conditions.The paper then examines sizes of the identified sets, and a Monte Carlo exercise shows reasonable small sample performance of our procedures.
Description
Other Available Sources
http://scholar.harvard.edu/tamer/publications/identification-panel-data-models-withendogenous-censoring
http://public.econ.duke.edu/~shakeebk/paper-May31.pdf
http://mpra.ub.uni-muenchen.de/30373/1/MPRA_paper_30373.pdf
http://economics.yale.edu/sites/default/files/ponomareva-14-04-02.pdf
http://ssrn.com/abstract=1831402
http://www.niu.edu/ponomareva/KPT-panel_Dec2013.pdf
http://public.econ.duke.edu/~shakeebk/paper-May31.pdf
http://mpra.ub.uni-muenchen.de/30373/1/MPRA_paper_30373.pdf
http://economics.yale.edu/sites/default/files/ponomareva-14-04-02.pdf
http://ssrn.com/abstract=1831402
http://www.niu.edu/ponomareva/KPT-panel_Dec2013.pdf
Keywords
Panel Data, Dependent Censoring, Partial Identification
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service