Publication:
Asymmetry in Sexual Pheromones Is Not Required for Ascomycete Mating

Thumbnail Image

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier BV
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Gonçalves-Sá, Joana, and Andrew Murray. 2011. “Asymmetry in Sexual Pheromones Is Not Required for Ascomycete Mating.” Current Biology 21, no. 16: 1337–1346.

Research Data

Abstract

Highlights Asymmetric modification of pheromones is not required for yeast mating Two yeast strains that express complementary pheromones and receptors mate with each other Two yeast strains that express the same mating-type allele can mate with each other Receptors and the pheromones determine the sexual identity of budding yeast Summary Background We investigated the determinants of sexual identity in the budding yeast Saccharomyces cerevisiae. The higher fungi are divided into the ascomycetes and the basidiomycetes. Most ascomycetes have two mating types: one (called α in yeasts and MAT1-1 in filamentous fungi) produces a small, unmodified, peptide pheromone, and the other (a in yeasts and MAT1-2 in filamentous fungi) produces a peptide pheromone conjugated to a C-terminal farnesyl group that makes it very hydrophobic. In the basidiomycetes, all pheromones are lipid-modified, and this difference is a distinguishing feature between the phyla. We asked whether the asymmetry in pheromone modification is required for successful mating in ascomycetes. Results We cloned receptor and pheromone genes from a filamentous ascomycete and a basidiomycete and expressed these in the budding yeast, Saccharomyces cerevisiae, to generate novel, alternative mating pairs. We find that two yeast cells can mate even when both cells secrete a-like or α-like peptides. Importantly, this is true regardless of whether the cells express the a- or α-mating-type loci, which control the expression of other, sex-specific genes, in addition to the pheromones and pheromone receptors. Conclusions We demonstrate that the asymmetric pheromone modification is not required for successful mating of ascomycete fungi and confirm that, in budding yeast, the primary determinants of mating are the specificity of the receptors and their corresponding pheromones.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories