Publication:
Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning

Thumbnail Image

Date

2013

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Jin, Zhong, Wei Sun, Yonggang Ke, Chih-Jen Shih, Geraldine L.C. Paulus, Qing Hua Wang, Bin Mu, Peng Yin, and Michael S. Strano. 2013. “Metallized DNA Nanolithography for Encoding and Transferring Spatial Information for Graphene Patterning.” Nature Communications 4 (1) (April 9). doi:10.1038/ncomms2690.

Research Data

Abstract

The vision for graphene and other two-dimensional electronics is the direct production of nanoelectronic circuits and barrier materials from a single precursor sheet. DNA origami and single-stranded tiles are powerful methods to encode complex shapes within a DNA sequence, but their translation to patterning other nanomaterials has been limited. Here we develop a metallized DNA nanolithography that allows transfer of spatial information to pattern two-dimensional nanomaterials capable of plasma etching. Width, orientation and curvature can be programmed by specific sequence design and transferred, as we demonstrate for graphene. Spatial resolution is limited by distortion of the DNA template upon Au metallization and subsequent etching. The metallized DNA mask allows for plasmonic enhanced Raman spectroscopy of the underlying graphene, providing information on defects, doping and lattice symmetry. This DNA nanolithography enables wafer-scale patterning of two-dimensional electronic materials to create diverse circuit elements, including nanorings, three- and four-membered nanojunctions, and extended nanoribbons.

Description

Other Available Sources

Keywords

Chemical sciences, Materials science, Nanotechnology, Physical chemistry

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories