Publication:
Exploring the limit of metazoan thermal tolerance via comparative proteomics: thermally induced changes in protein abundance by two hydrothermal vent polychaetes

Thumbnail Image

Date

2012

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Royal Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Dilly, G. F., C. R. Young, W. S. Lane, J. Pangilinan, and P. R. Girguis. 2012. “Exploring the Limit of Metazoan Thermal Tolerance via Comparative Proteomics: Thermally Induced Changes in Protein Abundance by Two Hydrothermal Vent Polychaetes.” Proceedings of the Royal Society B: Biological Sciences 279, no. 1741: 3347–3356.

Research Data

Abstract

Temperatures around hydrothermal vents are highly variable, ranging from near freezing up to 300°C. Nevertheless, animals thrive around vents, some of which live near the known limits of animal thermotolerance. Paralvinella sulfincola, an extremely thermotolerant vent polychaete, and Paralvinella palmiformis, a cooler-adapted congener, are found along the Juan de Fuca Ridge in the northwestern Pacific. We conducted shipboard high-pressure thermotolerance experiments on both species to characterize the physiological adaptations underlying P. sulfincola's pronounced thermotolerance. Quantitative proteomics, expressed sequence tag (EST) libraries and glutathione assays revealed that P. sulfincola (i) exhibited an upregulation in the synthesis and recycling of glutathione with increasing temperature, (ii) downregulated nicotinamide adenine dinucleotide (NADH) and succinate dehydrogenases (key enzymes in oxidative phosphorylation) with increasing temperature, and (iii) maintained elevated levels of heat shock proteins (HSPs) across all treatments. In contrast, P. palmiformis exhibited more typical responses to increasing temperatures (e.g. increasing HSPs at higher temperatures). These data reveal differences in how a mesotolerant and extremely thermotolerant eukaryote respond to thermal stress, and suggest that P. sulfincola's capacity to mitigate oxidative stress via increased synthesis of antioxidants and decreased flux through the mitochondrial electron transport chain enable pronounced thermotolerance. Ultimately, oxidative stress may be the key factor in limiting all metazoan thermotolerance.

Description

Other Available Sources

Keywords

proteomics, hydrothermal vents, thermotolerance, oxidative stress, Paralvinella

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories