Publication:
Using Covalent Dimers of Human Carbonic Anhydrase II To Model Bivalency in Immunoglobulins

Thumbnail Image

Date

2011

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society (ACS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Mack, Eric T., Phillip W. Snyder, Raquel Perez-Castillejos, and George M. Whitesides. 2011. “Using Covalent Dimers of Human Carbonic Anhydrase II To Model Bivalency in Immunoglobulins.” Journal of the American Chemical Society 133 (30) (August 3): 11701–11715. doi:10.1021/ja2038084.

Research Data

Abstract

This paper describes the development of a new bivalent system comprising synthetic dimers of carbonic anhydrase linked chemically through thiol groups of cysteine residues introduced by site-directed mutagenesis. These compounds serve as models with which to study the interaction of bivalent proteins with ligands presented at the surface of mixed self-assembled monolayers (SAMs). Monovalent carbonic anhydrase (CA) binds to benzenesulfonamide ligands presented on the surface of the SAM with K(d)(surf) = 89 nM. The synthetic bivalent proteins--inspired by the structure of immunoglobulins--bind bivalently to the sulfonamide-functionalized SAMs with low nanomolar avidities (K(d)(avidity,surf) = 1-3 nM); this difference represents a ~50-fold enhancement of bivalent over monovalent association. The paper describes dimers of CA having (i) different lengths of the covalent linker that joined the two proteins and (ii) different points of attachment of the linker to the protein (either near the active site (C133) or distal to the active site (C185)). Comparison of the thermodynamics of their interactions with SAMs presenting arylsulfonamide groups demonstrated that varying the length of the linker between the molecules of CA had virtually no effect on the rate of association, or on the avidity of these dimers with ligand-presenting surfaces. Varying the point of attachment of the linker between monomeric CA's also had almost no effect on the avidity of the dimers, although changing the point of attachment affected the rates of binding and unbinding. These observations indicate that the avidities of these bivalent proteins, and by inference the avidities of structurally similar bivalent proteins such as IgG, are unexpectedly insensitive to the structure of the linker connecting them.

Description

Other Available Sources

Keywords

Terms of Use

Metadata Only

Endorsement

Review

Supplemented By

Referenced By

Related Stories