Publication: Cooling, Collisions and non-Sticking of Polyatomic Molecules in a Cryogenic Buffer Gas Cell
Open/View Files
Date
2014-10-21
Authors
Published Version
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Piskorski, Julia Hege. 2014. Cooling, Collisions and non-Sticking of Polyatomic Molecules in a Cryogenic Buffer Gas Cell. Doctoral dissertation, Harvard University.
Research Data
Abstract
We cool and study trans-Stilbene, Nile Red and Benzonitrile in a cryogenic (7K) cell filled with low density helium buffer gas. No molecule-helium cluster formation is observed, indicating limited atom-molecule sticking in this system. We place an upper limit of 5% on the population of clustered He-trans-Stilbene, consistent with a measured He-molecule collisional residence time of less than \(1 \mu s\). With several low energy torsional modes, trans-Stilbene is less rigid than any molecule previously buffer gas cooled into the Kelvin regime. We report cooling and gas phase visible spectroscopy of Nile Red, a much larger molecule. Our data suggest that buffer gas cooling will be feasible for a variety of small biological molecules. The same cell is also ideal for studying collisional relaxation cross sections. Measurements of Benzonitrile vibrational state decay results in determination of the vibrational relaxation cross sections of \(\sigma_{22} = 8x10^{-15} cm^2\) and \(\sigma_{21} = 6x10^{-15} cm^2\) for the 22 (v=1) and 21 (v=1) states. For the first time, we directly observe formation of cold molecular dimers in a cryogenic buffer gas cell and determine the dimer formation cross section to be \(\sim10^{-13} cm^2\).
Description
Other Available Sources
Keywords
Physics, Molecular physics, Low temperature physics, Buffer gas cooling, Low temperature physics, UV/Vis spectroscopy, van der Waals clusters
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service