Publication:
Denaturation of Proteins by SDS and Tetraalkylammonium Dodecyl Sulfates

Thumbnail Image

Date

2011

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society (ACS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Lee, Andrew, Sindy K. Y. Tang, Charles R. Mace, and George M. Whitesides. 2011. “Denaturation of Proteins by SDS and Tetraalkylammonium Dodecyl Sulfates.” Langmuir 27, no. 18: 11560–11574.

Research Data

Abstract

This article describes the use of capillary electrophoresis (CE) to examine the influence of different cations (C(+); C(+) = Na(+) and tetra-n-alkylammonium, NR(4)(+), where R = Me, Et, Pr, and Bu) on the rates of denaturation of bovine carbonic anhydrase II (BCA) in the presence of anionic surfactant dodecylsulfate (DS(-)). An analysis of the denaturation of BCA in solutions of Na(+)DS(-) and NR(4)(+)DS(-) (in Tris-Gly buffer) indicated that the rates of formation of complexes of denatured BCA with DS(-) (BCA(D)-DS(-)(n,sat)) are indistinguishable and independent of the cation below the critical micellar concentration (cmc) and independent of the total concentration of DS(-) above the cmc. At concentrations of C(+)DS(-) above the cmc, BCA denatured at rates that depended on the cation; the rates decreased by a factor >10(4) in the order of Na(+) ≈ NMe(4)(+) > NEt(4)(+) > NPr(4)(+) > NBu(4)(+), which is the same order as the values of the cmc (which decrease from 4.0 mM for Na(+)DS(-) to 0.9 mM for NBu(4)(+)DS(-) in Tris-Gly buffer). The relationship between the cmc values and the rates of formation of BCA(D)-DS(-)(n,sat()) suggested that the kinetics of denaturation of BCA involve the association of this protein with monomeric DS(-) rather than with micelles of (C(+)DS(-))(n). A less-detailed survey of seven other proteins (α-lactalbumin, β-lactoglobulin A, β-lactoglobulin B, carboxypeptidase B, creatine phosphokinase, myoglobin, and ubiquitin) showed that the difference between Na(+)DS(-) and NR(4)(+)DS(-) observed with BCA was not general. Instead, the influence of NR(4)(+) on the association of DS(-) with these proteins depended on the protein. The selection of the cation contributed to the properties (including the composition, electrophoretic mobility, and partitioning behavior in aqueous two-phase systems) of aggregates of denatured protein and DS(-). These results suggest that the variation in the behavior of NR(4)(+)DS(-) with changes in R may be exploited in methods used to analyze and separate mixtures of proteins.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories