Publication:
The Effect of Hydrostatic Pressure on Three-Dimensional Chondroinduction of Human Adipose–Derived Stem Cells

Thumbnail Image

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Mary Ann Liebert Inc
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Ogawa, Rei, Shuichi Mizuno, George F. Murphy, and Dennis P. Orgill. 2009. “The Effect of Hydrostatic Pressure on Three-Dimensional Chondroinduction of Human Adipose–Derived Stem Cells.” Tissue Engineering Part A 15 (10) (October): 2937–2945. doi:10.1089/ten.tea.2008.0672.

Research Data

Abstract

Background: The optimal production of three-dimensional cartilage in vitro requires both inductive factors and specified culture conditions (e.g., hydrostatic pressure [HP], gas concentration, and nutrient supply) to promote cell viability and maintain phenotype. In this study, we optimized the conditions for human cartilage induction using human adipose–derived stem cells (ASCs), collagen scaffolds, and cyclic HP treatment. Methods: Human ASCs underwent primary culture and three passages before being seeded into collagen scaffolds. These constructs were incubated for 1 week in an automated bioreactor using cyclic HP at 0–0.5 MPa, 0.5 Hz, and compared to constructs exposed to atmospheric pressure. In both groups, chondrogenic differentiation medium including transforming growth factor-β1 was employed. One, 2, 3, and 4 weeks after incubation, the cell constructs were harvested for histological, immunohistochemical, and gene expression evaluation. Results: In histological and immunohistochemical analyzes, pericellular and extracellular metachromatic matrix was observed in both groups and increased over 4 weeks, but accumulated at a higher rate in the HP group. Cell number was maintained in the HP group over 4 weeks but decreased after 2 weeks in the atmospheric pressure group. Chondrogenic-specific gene expression of type II and X collagen, aggrecan, and SRY-box9 was increased in the HP group especially after 2 weeks. Conclusion: Our results demonstrate chondrogenic differentiation of ASCs in a three-dimensional collagen scaffolds with treatment of a cyclic HP. Cyclic HP was effective in enhancing accumulation of extracellular matrix and expression of genes indicative of chondrogenic differentiation.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories