Publication:
Momentum-resolved STM studies of Rashba-split surface states on the topological semimetal Sb

Thumbnail Image

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier BV
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Soumyanarayanan, Anjan, and Jennifer E. Hoffman. 2014. “Momentum-Resolved STM Studies of Rashba-Split Surface States on the Topological Semimetal Sb.” Journal of Electron Spectroscopy and Related Phenomena (November). doi:10.1016/j.elspec.2014.10.008.

Research Data

Abstract

Topological materials host protected surface states with locked spin and momentum degrees of freedom. The helical Dirac character of the surface states, of tremendous scientific interest, stems from the interplay of the bulk band structure and surface Rashba spin-orbit interaction. The semimetal Sb offers a pristine platform to examine the Rashba origins of the Dirac-like topological surface states. Here we present an overview of our momentum-resolved scanning tunneling spectroscopy studies of Sb, over an extended (300 meV) energy range, revealing several features characteristic of the emergence of the Dirac-like surface states from a conventional Rashba-type parabolic dispersion. Our work provides a conceptual framework to create and investigate tunable Rashba states with topological properties.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories