Publication: Dissipative Dynamics of a Driven Quantum Spin Coupled to a Bath of Ultracold Fermions
Open/View Files
Date
2013
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society (APS)
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Knap, Michael, Dmitry A. Abanin, and Eugene Demler. 2013. Dissipative Dynamics of a Driven Quantum Spin Coupled to a Bath of Ultracold Fermions. Physical Review Letters 111, no. 26: 265302.
Research Data
Abstract
We explore the dynamics and the steady state of a driven quantum spin coupled to a bath of fermions, which can be realized with a strongly imbalanced mixture of ultracold atoms using currently available experimental tools. Radio-frequency driving can be used to induce tunneling between the spin states. The Rabi oscillations are modified due to the coupling of the quantum spin to the environment, which causes frequency renormalization and damping. The spin-bath coupling can be widely tuned by adjusting the scattering length through a Feshbach resonance. When the scattering potential creates a bound state, by tuning the driving frequency it is possible to populate either the ground state, in which the bound state is filled, or a metastable state in which the bound state is empty. In the latter case, we predict an emergent inversion of the steady-state magnetization. Our work shows that different regimes of dissipative dynamics can be explored with a quantum spin coupled to a bath of ultracold fermions.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service