Publication:
G1 arrest and differentiation can occur independently of Rb family function

Thumbnail Image

Date

2010

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Rockefeller University Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Wirt, S. E., A. S. Adler, V. Gebala, J. M. Weimann, B. E. Schaffer, L. A. Saddic, P. Viatour, et al. 2010. “G1 Arrest and Differentiation Can Occur Independently of Rb Family Function.” The Journal of Cell Biology 191 (4) (November 8): 809–825. doi:10.1083/jcb.201003048.

Research Data

Abstract

The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9–11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories