Publication:
The geochemical cycling of reactive chlorine through the marine troposphere

Thumbnail Image

Date

1990

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-Blackwell
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Keene, William C., Alexander A. P. Pszenny, Daniel J. Jacob, Robert A. Duce, James N. Galloway, Joseph J. Schultz-Tokos, Herman Sievering, and Joe F. Boatman. 1990. “The Geochemical Cycling of Reactive Chlorine through the Marine Troposphere.” Global Biogeochemical Cycles 4 (4) (December): 407–430. doi:10.1029/gb004i004p00407.

Research Data

Abstract

Heterogeneous reactions involving sea‐salt aerosol in the marine troposphere are the major global source for volatile inorganic chlorine. We measured reactant and product species hypothesized to be associated with these chemical transformations as a function of phase, particle size, and altitude over the North Atlantic Ocean during the summer of 1988. Concentrations of HCl were typically less than 1.0 ppbv near the sea surface and decreased with altitude and with distance from the U.S. east coast. Concentrations of Cl volatilized from aerosols were generally equivalent to the corresponding concentrations of HCl and ranged from less than detection limits to 125 nmol m STP. Highest absolute and percentage losses of particulate Cl were typically associated with elevated concentrations of anthropogenic combustion products. Concentrations of product nss SO and N0 in coarse aerosol fractions indicate that on average only 38% of measured Cl deficits could be accounted for by the combined effects of acid‐base desorption and reactions involving nonacidic N gases. We hypothesize a mechanism for the Cl loss initiated by reaction of O at sea‐salt aerosol surfaces, generating Cl followed by rapid photochemical conversion of Cl to HCl via Cl atoms (Cl˙) and eventual recapture of HCl by the aerosol. Simulations with a zero‐dimension (0‐D) photochemical model suggest that oxidation by Cl˙ may be an important tropospheric sink for dimethyl sulfide and hydrocarbons. Under low‐NO conditions, the rapid cycling of reactive Cl would provide a catalytic loss mechanism for O, which would possibly explain the low O concentrations often observed above the world's oceans.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories