Publication:
Hybrid Hydrogels with Extremely High Stiffness and Toughness

Thumbnail Image

Date

2014

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society (ACS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Li, Jianyu, Widusha R. K. Illeperuma, Zhigang Suo, and Joost J. Vlassak. 2014. “Hybrid Hydrogels with Extremely High Stiffness and Toughness.” ACS Macro Lett. (May 19): 520–523. doi:10.1021/mz5002355.

Research Data

Abstract

The development of hydrogels for cartilage replacement and soft robotics has highlighted a challenge: load-bearing hydrogels need to be both stiff and tough. Several approaches have been reported to improve the toughness of hydrogels, but simultaneously achieving high stiffness and toughness remains difficult. Here we report that alginate-polyacrylamide hydrogels can simultaneously achieve high stiffness and toughness. We combine short- and long-chain alginates to reduce the viscosity of pregel solutions and synthesize homogeneous hydrogels of high ionic cross-link density. The resulting hydrogels can have elastic moduli of ∼1 MPa and fracture energies of ∼4 kJ m–2. Furthermore, this approach breaks the inverse relation between stiffness and toughness: while maintaining constant elastic moduli, these hydrogels can achieve fracture energies up to ∼16 kJ m–2. These stiff and tough hydrogels hold promise for further development as load-bearing materials.

Description

Keywords

hydrogels, fracture mechanics, toughness, stiffness, mechanical properties

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories