Publication: Distinct, strict requirements for Gfi-1b in adult bone marrow red cell and platelet generation
Open/View Files
Date
2014
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Rockefeller University Press
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Foudi, A., D. J. Kramer, J. Qin, D. Ye, A. Behlich, S. Mordecai, F. I. Preffer, et al. 2014. “Distinct, strict requirements for Gfi-1b in adult bone marrow red cell and platelet generation.” The Journal of Experimental Medicine 211 (5): 909-927. doi:10.1084/jem.20131065. http://dx.doi.org/10.1084/jem.20131065.
Research Data
Abstract
The zinc finger transcriptional repressor Gfi-1b is essential for erythroid and megakaryocytic development in the embryo. Its roles in the maintenance of bone marrow erythropoiesis and thrombopoiesis have not been defined. We investigated Gfi-1b’s adult functions using a loxP-flanked Gfi-1b allele in combination with a novel doxycycline-inducible Cre transgene that efficiently mediates recombination in the bone marrow. We reveal strict, lineage-intrinsic requirements for continuous adult Gfi-1b expression at two distinct critical stages of erythropoiesis and megakaryopoiesis. Induced disruption of Gfi-1b was lethal within 3 wk with severely reduced hemoglobin levels and platelet counts. The erythroid lineage was arrested early in bipotential progenitors, which did not give rise to mature erythroid cells in vitro or in vivo. Yet Gfi-1b−/− progenitors had initiated the erythroid program as they expressed many lineage-restricted genes, including Klf1/Eklf and Erythropoietin receptor. In contrast, the megakaryocytic lineage developed beyond the progenitor stage in Gfi-1b’s absence and was arrested at the promegakaryocyte stage, after nuclear polyploidization, but before cytoplasmic maturation. Genome-wide analyses revealed that Gfi-1b directly regulates a wide spectrum of megakaryocytic and erythroid genes, predominantly repressing their expression. Together our study establishes Gfi-1b as a master transcriptional repressor of adult erythropoiesis and thrombopoiesis.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service