Publication: Beyond Crossing Fibers: Bootstrap Probabilistic Tractography Using Complex Subvoxel Fiber Geometries
Open/View Files
Date
2014
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Frontiers Media S.A.
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Campbell, Jennifer S. W., Parya MomayyezSiahkal, Peter Savadjiev, Ilana R. Leppert, Kaleem Siddiqi, and G. Bruce Pike. 2014. “Beyond Crossing Fibers: Bootstrap Probabilistic Tractography Using Complex Subvoxel Fiber Geometries.” Frontiers in Neurology 5 (1): 216. doi:10.3389/fneur.2014.00216. http://dx.doi.org/10.3389/fneur.2014.00216.
Research Data
Abstract
Diffusion magnetic resonance imaging fiber tractography is a powerful tool for investigating human white matter connectivity in vivo. However, it is prone to false positive and false negative results, making interpretation of the tractography result difficult. Optimal tractography must begin with an accurate description of the subvoxel white matter fiber structure, includes quantification of the uncertainty in the fiber directions obtained, and quantifies the confidence in each reconstructed fiber tract. This paper presents a novel and comprehensive pipeline for fiber tractography that meets the above requirements. The subvoxel fiber geometry is described in detail using a technique that allows not only for straight crossing fibers but for fibers that curve and splay. This technique is repeatedly performed within a residual bootstrap statistical process in order to efficiently quantify the uncertainty in the subvoxel geometries obtained. A robust connectivity index is defined to quantify the confidence in the reconstructed connections. The tractography pipeline is demonstrated in the human brain.
Description
Other Available Sources
Keywords
diffusion MRI, fiber orientation distribution function, high angular resolution diffusion imaging, fiber dispersion, curve inference
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service