Publication: Human Leukocyte Antigen Typing Using a Knowledge Base Coupled with a High-Throughput Oligonucleotide Probe Array Analysis
Open/View Files
Date
2014
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Frontiers Media S.A.
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Zhang, Guang Lan, Derin B. Keskin, Hsin-Nan Lin, Hong Huang Lin, David S. DeLuca, Scott Leppanen, Edgar L. Milford, Ellis L. Reinherz, and Vladimir Brusic. 2014. “Human Leukocyte Antigen Typing Using a Knowledge Base Coupled with a High-Throughput Oligonucleotide Probe Array Analysis.” Frontiers in Immunology 5 (1): 597. doi:10.3389/fimmu.2014.00597. http://dx.doi.org/10.3389/fimmu.2014.00597.
Research Data
Abstract
Human leukocyte antigens (HLA) are important biomarkers because multiple diseases, drug toxicity, and vaccine responses reveal strong HLA associations. Current clinical HLA typing is an elimination process requiring serial testing. We present an alternative in situ synthesized DNA-based microarray method that contains hundreds of thousands of probes representing a complete overlapping set covering 1,610 clinically relevant HLA class I alleles accompanied by computational tools for assigning HLA type to 4-digit resolution. Our proof-of-concept experiment included 21 blood samples, 18 cell lines, and multiple controls. The method is accurate, robust, and amenable to automation. Typing errors were restricted to homozygous samples or those with very closely related alleles from the same locus, but readily resolved by targeted DNA sequencing validation of flagged samples. High-throughput HLA typing technologies that are effective, yet inexpensive, can be used to analyze the world’s populations, benefiting both global public health and personalized health care.
Description
Other Available Sources
Keywords
Methods Article, HLA typing, HLA disease association, population typing
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service