Publication:
Isolated cell behavior drives the evolution of antibiotic resistance

Thumbnail Image

Open/View Files

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

John Wiley & Sons, Ltd
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Artemova, Tatiana, Ylaine Gerardin, Carmel Dudley, Nicole M Vega, and Jeff Gore. 2015. “Isolated cell behavior drives the evolution of antibiotic resistance.” Molecular Systems Biology 11 (7): 822. doi:10.15252/msb.20145888. http://dx.doi.org/10.15252/msb.20145888.

Research Data

Abstract

Bacterial antibiotic resistance is typically quantified by the minimum inhibitory concentration (MIC), which is defined as the minimal concentration of antibiotic that inhibits bacterial growth starting from a standard cell density. However, when antibiotic resistance is mediated by degradation, the collective inactivation of antibiotic by the bacterial population can cause the measured MIC to depend strongly on the initial cell density. In cases where this inoculum effect is strong, the relationship between MIC and bacterial fitness in the antibiotic is not well defined. Here, we demonstrate that the resistance of a single, isolated cell—which we call the single-cell MIC (scMIC)—provides a superior metric for quantifying antibiotic resistance. Unlike the MIC, we find that the scMIC predicts the direction of selection and also specifies the antibiotic concentration at which selection begins to favor new mutants. Understanding the cooperative nature of bacterial growth in antibiotics is therefore essential in predicting the evolution of antibiotic resistance.

Description

Keywords

antibiotic resistance, beta-lactamase, cooperative growth, evolution

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories