Publication:
Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries

Thumbnail Image

Open/View Files

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Pub. Group
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Schmidt, Thorsten L., Brian J. Beliveau, Yavuz O. Uca, Mark Theilmann, Felipe Da Cruz, Chao-Ting Wu, and William M. Shih. 2015. “Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries.” Nature Communications 6 (1): 8634. doi:10.1038/ncomms9634. http://dx.doi.org/10.1038/ncomms9634.

Research Data

Abstract

Synthetic oligonucleotides are the main cost factor for studies in DNA nanotechnology, genetics and synthetic biology, which all require thousands of these at high quality. Inexpensive chip-synthesized oligonucleotide libraries can contain hundreds of thousands of distinct sequences, however only at sub-femtomole quantities per strand. Here we present a selective oligonucleotide amplification method, based on three rounds of rolling-circle amplification, that produces nanomole amounts of single-stranded oligonucleotides per millilitre reaction. In a multistep one-pot procedure, subsets of hundreds or thousands of single-stranded DNAs with different lengths can selectively be amplified and purified together. These oligonucleotides are used to fold several DNA nanostructures and as primary fluorescence in situ hybridization probes. The amplification cost is lower than other reported methods (typically around US$ 20 per nanomole total oligonucleotides produced) and is dominated by the use of commercial enzymes.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories