Publication:
Multivariate analyses applied to fetal, neonatal and pediatric MRI of neurodevelopmental disorders

Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Levman, Jacob, and Emi Takahashi. 2015. “Multivariate analyses applied to fetal, neonatal and pediatric MRI of neurodevelopmental disorders.” NeuroImage : Clinical 9 (1): 532-544. doi:10.1016/j.nicl.2015.09.017. http://dx.doi.org/10.1016/j.nicl.2015.09.017.

Research Data

Abstract

Multivariate analysis (MVA) is a class of statistical and pattern recognition methods that involve the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of medical neuroimaging-related challenges including identifying variables associated with a measure of clinical importance (i.e. patient outcome), creating diagnostic tests, assisting in characterizing developmental disorders, understanding disease etiology, development and progression, assisting in treatment monitoring and much more. Compared to adults, imaging of developing immature brains has attracted less attention from MVA researchers. However, remarkable MVA research growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to neurodevelopmental disorders in fetal, neonatal and pediatric magnetic resonance imaging (MRI) of the brain. The goal of this manuscript is to provide a concise review of the state of the scientific literature on studies employing brain MRI and MVA in a pre-adult population. Neurological developmental disorders addressed in the MVA research contained in this review include autism spectrum disorder, attention deficit hyperactivity disorder, epilepsy, schizophrenia and more. While the results of this review demonstrate considerable interest from the scientific community in applications of MVA technologies in pediatric/neonatal/fetal brain MRI, the field is still young and considerable research growth remains ahead of us.

Description

Keywords

Multivariate analysis, Machine learning, Fetal, Neonatal, Pediatric, Brain MRI

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories