Publication: Disulfide Bond Formation and N-Glycosylation Modulate Protein-Protein Interactions in GPI-Transamidase (GPIT)
Open/View Files
Date
2017
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Yi, Lina, Gunes Bozkurt, Qiubai Li, Stanley Lo, Anant K. Menon, and Hao Wu. 2017. “Disulfide Bond Formation and N-Glycosylation Modulate Protein-Protein Interactions in GPI-Transamidase (GPIT).” Scientific Reports 7 (1): 45912. doi:10.1038/srep45912. http://dx.doi.org/10.1038/srep45912.
Research Data
Abstract
Glycosylphosphatidylinositol (GPI) transamidase (GPIT), the enzyme that attaches GPI anchors to proteins as they enter the lumen of the endoplasmic reticulum, is a membrane-bound hetero-pentameric complex consisting of Gpi8, Gpi16, Gaa1, Gpi17 and Gab1. Here, we expressed and purified the luminal domain of Saccharomyces cerevisiae (S. cerevisiae) Gpi8 using different expression systems, and examined its interaction with insect cell expressed luminal domain of S. cerevisiae Gpi16. We found that the N-terminal caspase-like domain of Gpi8 forms a disulfide-linked dimer, which is strengthened by N-glycosylation. The non-core domain of Gpi8 following the caspase-like domain inhibits this dimerization. In contrast to the previously reported disulfide linkage between Gpi8 and Gpi16 in human and trypanosome GPIT, our data show that the luminal domains of S. cerevisiae Gpi8 and S. cerevisiae Gpi16 do not interact directly, nor do they form a disulfide bond in the intact S. cerevisiae GPIT. Our data suggest that subunit interactions within the GPIT complex from different species may vary, a feature that should be taken into account in future structural and functional studies.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service