Publication:
Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients12

Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Neoplasia Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Jafari-Khouzani, K., K. E. Emblem, J. Kalpathy-Cramer, A. Bjørnerud, M. G. Vangel, E. R. Gerstner, K. M. Schmainda, et al. 2015. “Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients12.” Translational Oncology 8 (3): 137-146. doi:10.1016/j.tranon.2015.03.002. http://dx.doi.org/10.1016/j.tranon.2015.03.002.

Research Data

Abstract

OBJECTIVES This study evaluates the repeatability of brain perfusion using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a variety of post-processing methods. METHODS Thirty-two patients with newly diagnosed glioblastoma were recruited. On a 3-T MRI using a dual-echo, gradient-echo spin-echo DSC-MRI protocol, the patients were scanned twice 1 to 5 days apart. Perfusion maps including cerebral blood volume (CBV) and cerebral blood flow (CBF) were generated using two contrast agent leakage correction methods, along with testing normalization to reference tissue, and application of arterial input function (AIF). Repeatability of CBV and CBF within tumor regions and healthy tissues, identified by structural images, was assessed with intra-class correlation coefficients (ICCs) and repeatability coefficients (RCs). Coefficients of variation (CVs) were reported for selected methods. RESULTS CBV and CBF were highly repeatable within tumor with ICC values up to 0.97. However, both CBV and CBF showed lower ICCs for healthy cortical tissues (up to 0.83), healthy gray matter (up to 0.95), and healthy white matter (WM; up to 0.93). The values of CV ranged from 6% to 10% in tumor and 3% to 11% in healthy tissues. The values of RC relative to the mean value of measurement within healthy WM ranged from 22% to 42% in tumor and 7% to 43% in healthy tissues. These percentages show how much variation in perfusion parameter, relative to that in healthy WM, we expect to observe to consider it statistically significant. We also found that normalization improved repeatability, but AIF deconvolution did not. CONCLUSIONS DSC-MRI is highly repeatable in high-grade glioma patients.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories