Publication:
Cerebellar associative sensory learning defects in five mouse autism models

Thumbnail Image

Open/View Files

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

eLife Sciences Publications, Ltd
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Kloth, A. D., A. Badura, A. Li, A. Cherskov, S. G. Connolly, A. Giovannucci, M. A. Bangash, et al. 2015. “Cerebellar associative sensory learning defects in five mouse autism models.” eLife 4 (1): e06085. doi:10.7554/eLife.06085. http://dx.doi.org/10.7554/eLife.06085.

Research Data

Abstract

Sensory integration difficulties have been reported in autism, but their underlying brain-circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC, Mecp2R308/Y, Cntnap2−/−, L7-Tsc1 (L7/Pcp2Cre::Tsc1flox/+), and patDp(15q11-13)/+, we report specific perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring cerebellar plasticity. By distinguishing perturbations in the probability and characteristics of learned responses, we found that probability was reduced in Cntnap2−/−, patDp(15q11-13)/+, and L7/Pcp2Cre::Tsc1flox/+, which are associated with Purkinje-cell/deep-nuclear gene expression, along with Shank3+/ΔC. Amplitudes were smaller in L7/Pcp2Cre::Tsc1flox/+ as well as Shank3+/ΔC and Mecp2R308/Y, which are associated with granule cell pathway expression. Shank3+/ΔC and Mecp2R308/Y also showed aberrant response timing and reduced Purkinje-cell dendritic spine density. Overall, our observations are potentially accounted for by defects in instructed learning in the olivocerebellar loop and response representation in the granule cell pathway. Our findings indicate that defects in associative temporal binding of sensory events are widespread in autism mouse models. DOI: http://dx.doi.org/10.7554/eLife.06085.001

Description

Keywords

autism spectrum disorder, associative learning, cerebellum, mouse

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories