Publication:
The calcium sensor synaptotagmin 7 is required for synaptic facilitation

Thumbnail Image

Open/View Files

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Jackman, Skyler L., Josef Turecek, Justine E. Belinsky, and Wade G. Regehr. 2015. “The calcium sensor synaptotagmin 7 is required for synaptic facilitation.” Nature 529 (7584): 88-91. doi:10.1038/nature16507. http://dx.doi.org/10.1038/nature16507.

Research Data

Abstract

It has been known for over 70 years that synaptic strength is dynamically regulated in a use-dependent manner1. At synapses with a low initial release probability, closely spaced presynaptic action potentials can result in facilitation, a short-term form of enhancement where each subsequent action potential evokes greater neurotransmitter release2. Facilitation can enhance neurotransmitter release manyfold and profoundly influence information transfer across synapses3, but the underlying mechanism remains a mystery. Among the proposed mechanisms is that a specialized calcium sensor for facilitation transiently increases the probability of release2,4 and is distinct from the fast sensors that mediate rapid neurotransmitter release. Yet such a sensor has never been identified, and its very existence has been disputed5,6. Here we show that synaptotagmin 7 (syt7) is a calcium sensor that is required for facilitation at multiple central synapses. In syt7 knockout mice, facilitation is eliminated even though the initial probability of release and presynaptic residual calcium signals are unaltered. Expression of wild-type syt7 in presynaptic neurons restored facilitation, whereas expression of a mutated syt7 with a calcium-insensitive C2A domain did not. By revealing the role of syt7 in synaptic facilitation, these results resolve a longstanding debate about a widespread form of short-term plasticity, and will enable future studies that may lead to a deeper understanding of the functional importance of facilitation.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories